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1 Supplementary material: Initial run

A few algorithms resulted in consistently low accuracies or occasional failures
in their registrations. We did our best to rectify these problems. For example,
ROMEQ'’s initial run produced inconsistent results, so Hellier provided
intensity correction code which we applied to all of the data prior to registering
with ROMEQ. Of the 2,168 registrations, there were 19 failures for AIR,
accompanied by the message: “Registration terminated due to a Hessian matrix
that was not positive definite” (even with the “-q” option). We were able
to correct all of these cases by skipping the “alignlinear” step (and relying
on the preliminary linear alignment with FLIRT). SyN had seven failures,
which we corrected by first running Avant’s TranslateRegistration program
(this program had no effect on other registrations).

SPM’s DARTEL Toolbox resulted in highly variable results for the LPBA40
set (and low results obtained with one of the MGH10 images), most likely
because of the inconsistent way that an older version of the code dealt
with zeros in the images. DARTEL estimates its spatial transformation by
registering gray and white matter maps produced by the segmentation step.
Regions in these images, which had been set to zero in the skull-stripped data,
sometimes contained information from the tissue probability maps used by the
segmentation. We downloaded an updated version of DARTEL that corrects
for this and ran it again (in both a pairwise as well as average template
manner).

In addition to addressing variable results, we had to set reasonable time
constraints. SyN’s default parameters were found to be too computationally
intensive, so Avants recommended a different number of iterations to keep
computation under an hour per registration. Likewise, Rueckert provided
a parameter file with reduced control point spacing to reduce IRTK’s
computation time. IRTK, SICLE, and SPM’s Unified Segmentation and
DARTEL Toolbox were run by their authors on one registration pair to ensure
that the first author’s implementation and execution of their software was
correct. !

I Likewise for PASHA and HAMMER, but these were excluded from the study (see
Discussion).



2 Supplementary material: The trivial case: self-registration
results

For the trivial case, where each brain was registered to itself, all of the
methods performed nearly perfectly as measured by volume similarity,
with the exception of SPM’s DARTEL Toolbox for the LPBA40 set.
According to target volume overlap, the methods that gave less than perfect
results were: ANIMAL and ROMEO (for all four label sets), “SPM2-type”
Normalization (IBSR18, CUMC12, and MGH10), and ROMEO, SICLE, and
SPM’s DARTEL (LPBA40). The few cases of low values were obtained with
SPM’s DARTEL, and only for the LPBA40 set according to overlap and
distance measures.

The results were almost identical for the target, union, and mean volume
and surface overlap measures. Not surprisingly, the deviations from perfect
registration in the trivial case are revisited in the non-trivial, inter-brain
registrations results.



3 Supplementary material: More indifference-zone rankings

See Figures 8, 9, and 10 for indifference-zone ranking of the registration
methods for the IBSR18, CUMCI12, and MGH10 data, respectively. These
rankings are based on target overlap results, and correspond to the
indifference-zone ranking for the LPBA40 data in Figure 7.

Figure 8

Indifference-zone ranking of the registration methods: IBSR18 overlaps. This
matrix was constructed as in Figure 7 for target overlap rankings averaged
across 306 registration pairs using the 84 regions of the IBSR18 dataset
(union and mean overlap results are almost identical). Blue indicates higher
accuracy; the colors (and color range) are not comparable to those of the
other label sets (Figures 7, 9, and 10). (SPM_N*=“SPM2-type” Normalize,
SPM _N=Normalize, SPM US=Unified Segmentation, SPM D=DARTEL
pairwise)

Figure 9

Indifference-zone ranking of the registration methods: CUMC12 overlaps. This
matrix was constructed as in Figure 7 for target overlap rankings averaged
across 132 registration pairs using the 128 regions of the CUMCI12 dataset
(union and mean overlap results are almost identical). Blue indicates higher
accuracy; the colors (and color range) are not comparable to those of the
other label sets (Figures 7, 8, and 10). (SPM_N*=“SPM2-type” Normalize,
SPM _N=Normalize, SPM US=Unified Segmentation, SPM _D=DARTEL
pairwise)

Figure 10

Indifference-zone ranking of the registration methods: MGH10 overlaps. This
matrix was constructed as in Figure 7 for target overlap rankings averaged
across 90 registration pairs using the 74 regions of the MGH10 dataset
(union and mean overlap results are almost identical). Blue indicates higher
accuracy; the colors (and color range) are not comparable to those of the
other label sets (Figures 7, 8, and 9). (SPM_N*=“SPM2-type” Normalize,
SPM N=Normalize, SPM_US=Unified Segmentation, SPM D=DARTEL
pairwise)



4 Supplementary material: Volume similarity results

The volume similarity measures, averaged across all of the regions in each label
set, are shown in Figure 11. Volume similarity is only an indirect measure of
registration accuracy, however it can be used to expose gross discrepancies in
volume, if not shape. For each label set, all of the methods resulted in very
similar median values. The LPBA40 set and SPM DARTEL exhibited the
largest number of outliers.

Figure 11

Volume similarity by registration method. These box and whisker plots
(constructed as in Figure 5) show the volume similarity measures between
deformed source and target labels, averaged first across all of the regions in
each label set (LPBA40, IBSR18, CUMCI12, and MGH10) then across brain
pairs, with highest similarity at the top. (SPM_ N*=“SPM2-type” Normalize,
SPM _N=Normalize, SPM US=Unified Segmentation, SPM D=DARTEL

pairwise)



5 Supplementary material: Distance results

The box and whisker plot in Figure 12 shows the distance errors for the
LPBA40 label set. They exhibit a roughly similar pattern across the methods
as the overlap values in Figure 5, although regional differences may be seen
across Figures 13 and 7.

Figure 12

Distance error by registration method. The box and whisker plot was
constructed as in Figure 5 except that the measure is distance error
between deformed source and target label boundaries, averaged first across
all of the regions in the LPBA40 label set then across brain pairs, with
lowest errors toward the top. The brain images (constructed as in Figure
6) show the mean distance error per region as a color (blue indicates
higher accuracy). (SPM_N*=“SPM2-type” normalization, SPM N=SPM’s
Normalize, SPM_US=Unified Segmentation, SPM_D=DARTEL pairwise)

Figure 13

Indifference-zone ranking of the registration methods: LPBA40 distance
errors. This matrix was constructed as in Figure 7, except for distance
error rankings rather than overlap rankings. Blue indicates lower error and
higher accuracy. (SPM_N*=“SPM2-type” normalization, SPM N=SPM’s
Normalize, SPM_US=Unified Segmentation, SPM D=DARTEL pairwise)



6 Supplementary material: Dependence test

To determine the degree of correlation across source-target registration pairs,
we selected and organized pairs from the LPBA40 brains (e.g., a—b) into two
columns (a—b, c—d), where rows were independent of one another (no brain
appeared in multiple rows), but the two columns had one of four dependency
relationships to one another, as follows:

(1) No dependence; each brain was used only once (10 rows):
a—b, c—d
(2) source and target dependence; both brains were used twice (20 rows):
a—b, b—a
(3) source dependence; the source is used twice (13 rows):
a—b, a—c
(4) target dependence; the target is used twice (13 rows):
a—b, c—b

We then replaced each registration pair with the target overlap calculated for
that pair for each registration method, and computed the correlation between
the left and right columns for each dependency condition. We repeated this
procedure 1,000 times, using a new set of pairs satisfying each condition, and
averaged the results. The values for the no dependence condition are close to
zero as we would expect for independent pairs. All of the other conditions,
however, result in high correlations for most of the methods. One interesting
detail is that there is an asymmetry between conditions 3 and 4. For example,
for some methods, even when pairs that share a source brain are correlated,
pairs that share a target brain are not necessarily correlated.



7 Supplementary material: Software setup and commands

Most of the programs offer a range of flexible options for their similarity
metric, regularization method, etc. Therefore the following commands each
represent but a single implementation of its underlying algorithm. The
nonlinear deformation programs are listed in alphabetical order after the linear
registration program FLIRT.

Python and Matlab programs were used to call all of the commands below, and
were run on an OSX system (Mac Pro 2-Quad-Core (8-processor) Intel Xeon,
3GHz, 6GB RAM) with a 10.4 operating system, except for ROMEO (10.5
operating system, same hardware), ART (Dell PowerEdge 6600 Enterprise
server with four 2.8GHz Intel Xeon processors and 28GB of RAM running
Redhat linux), and JRD-fluid (run on LONT’s servers: SUN Microsystem
workstations with a dual 64-bit AMD Opteron 2.4 GHz processor running
Solaris). IRTK was run on some of the LPBA40 brains on servers at Imperial
College, and the results were confirmed to be identical to those obtained by
the first author.

FLIRT linear and rigid alignment commands were run before any of the other
commands, and the resulting linearly transformed brain images were resliced
using trilinear interpolation. For all algorithms, manual labels were resliced
using nearest-neighbor interpolation.

FLIRT (FSL v4.0)

Linearly align to MNI space (9-parameter):

flirt -in (source) -ref (MNI152) -omat (output transform).mat -out (output
brain) -bins 256 -cost corratio -searchrx -90 90 -searchry -90 90 -searchrz -90
90 -dof 9 -interp trilinear

where (MNI152) is the nonlinear MNI152 template used by FSL:
MNI152 T1 1mm brain

Rigidly align in MNI space (6-parameter):

flirt -in (above output brain) -ref (target) -omat (output transform).mat -out
(starting point for all other algorithms) -bins 256 -cost corratio -searchrx -30
30 -searchry -30 30 -searchrz -30 30 -dof 6 -interp trilinear

Reslice using 6-parameter output transform:
flirt -in (labeled source) -ref (labeled target) -applyxfm -init (transform).mat
-out (output labels) -paddingsize 0.0 -interp nearestneighbour

AIR v5.25

Align (12-parameter affine):

alignlinear (target).img (source).img (output affine transform).air -m 12 -t1 1
-t2 1 -q



Warp (2nd-order, Srd-order, jth-order and then 5th-order 168-parameter):
align warp (target).img (source).img (output transform).warp -m 2 5 -f
(above affine transform) -t1 1 -t2 1 -q

Reslice:
reslice_ warp (align warp transform).warp (output labels).img -a (labeled
source).img -n 0 -o

ANIMAL (MNI AutoReg v0.98k)

A Perl script performs non-linear fitting. The original ANIMAL parameters
were optimized Robbins (Robbins et al., 2004). The resulting Perl script was
modified again by Janke and Lepage. The script calls minctracc and the
parameters and hierarchical steps are as follows:

"-nonlinear’, ‘corrcoeft’, -weight’ 1, "-stiffness’, 1, "-similarity’,0.3,
-sub_lattice’,6

‘'step 32 16 12 8 6 4
‘blur fwhm™ 16 8 6 4 3 2
"iterations’: 20 20 20 20 20 10

Warp: (Perl script).pl -clobber -normalize (source).mnc (target).mnc (output
transform).xfm

Reslice: mincresample -transform (transform).xfm -like (labeled target).mnc
(source).mnc (output labels).mnc -nearest neighbour -keep real range -
short

Convert to Analyze format: mnc2nii -short (above output labels).mnc (output
labels).nii

ART

Warp: 3dwarper -R -trg (target).img -obj (source) -u (output transform).wrp
-0 (output brain).img -A -sd 8.0

Reslice: applywarp3d -nn -w (transform).wrp (labeled source)

Diffeomorphic Demons:

Warp: DemonsRegistration -f (target).hdr -m (source).hdr -0 (output
transform).hdr -e -s2 -130x20x10

Reslice: Resamplelmage -1 (labeled source).hdr -f (transform).hdr -o (output
labels).img



FNIRT
Warp: fnirt --config=schedule 0l.cnf --ref=(target) --in=(source) --cout
(output transform)

Reslice: applywarp -i (labeled source) -r (target) -w (transform) -o (output
labels) --interp=nn

IRTK

In the current study no regularization was used.

The parameter file called for a 2.5 mm minimum control point spacing, and
the non-rigid registration parameters were:

Lambdal, 2, and 3 =0

Control point spacing in X, Y, and Z = 20

Rigidly  align:  rreg  (target).hdr  (source).hdr -dofout  (output
transform) rreg.dof

Affinely align: areg (target).hdr (source).hdr -dofin (rreg transform) rreg.dof
-dofout (output transform) areg.dof

Warp: nreg (target).hdr (source).hdr -dofin (areg transform) areg.dof -dofout
(output transform) nreg.dof -parin ITK parameters 2.5mm.txt

Reslice: transformation (labeled source).hdr (output labels).hdr -dofin (nreg
transform) nreg.dof -target (target).hdr

JRD-Fluid:
Warp: mix_fluidmap_nohassle_column.out (source).img
(dimensions) (target).img (dimensions) (output directory) source le 0.95 0
(parameter),

where parameter is set to 4 for LONI LPBA40 images (181x217x181 voxels)
and set to 20 for all other images registered to the nonlinear MNI152 template.

Reslice: resample 8bit image NN.out (labeled source).img (above output
directory)/trn  DXP _ftle (above output directory)/trn DYP ftle (above
output directory)/trn_ DZP ftle (dimensions) (output labels)

ROMEO
Warp and reslice: Romeo.py -t (target) -s (source) -1 (labeled source) -o
(output brain) -d (output labels)

SICLE
Preparation: lereg2.exe -gf global.param -p input files/(source-target pair
parameter file).in | tee (source-target pair output file).out

Warp: rpp2.exe (source-target pair parameter file).in -def -jac -gf global.param



Reslice: deform3d.exe -coeff (source-
target pair output stem) res10000 iter00020.coeffs -t (labeled source).hdr
-0 (output labels).hdr -interp N

SPM5’s “SPM2-type” Normalization
Warp (in Matlab): spm_normalise(*(target).img”, “(source).img”, “(output
transform).mat”);

Reslice  (in Matlab): spm_ write sn(“(labeled source).img”, “(output
labels).mat”, struct(“interp”,0));

SPM5’s Normalize, Unified Segmentation, and DARTEL Toolbox
Matlab scripts were used to compose the transforms for these methods, and
may be obtained from http://www.mindboggle.info/papers/.

SyN
Linearly align (optional): TranslationRegistration (target).hdr (source).hdr
(output linear transform)

Warp: perl arnoMVSN.pl (target).hdr (source).hdr (above linear transform)
"-¢ 5 -n3 -130x99x11 -1 0.5 -s 2 -a 0.05 " (SyN directory) 0 0 0 (user name) 1

Reslice: WarplmageBackward (labeled source).hdr (transform filestem)warp
(output labels).hdr donearestneighbor

We corroborated results obtained with the above commands for the newer,
publicly released ANTS software (http://www.picsl.upenn.edu/ANTS/) using
the following commands:

Warp: ANTS 3 -m PR|(target).nii, (source).nii, 1, 2] -o (output transform).nii
-r Gauss|2,0] -t SyN[0.5] -1 30x99x11 —use-Histogram-Matching

Reslice: WarpImageMultiTransform 3 (labeled source).nii (output labels).nii
-R (target).nii (transform)Warp.nii (transform)Affine.txt —use-NN
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8 Supplementary material: Algorithm descriptions

8.1 FLIRT: FMRIB’s Linear Image Registration Tool

FLIRT was developed by Jenkinson (Jenkinson and Smith, 2001) at the
FMRIB Centre at the University of Oxford, UK. FLIRT can be downloaded
with the FMRIB Software Library (FSL) at http://www.fmrib.ox.ac.uk/
fsl/.

FLIRT is an automated linear (affine) registration tool based around a multi-
start, multi-resolution global optimisation method. It can be used for inter-
and intra-modal registration with 2-D or 3-D images. In addition, it can be run
with a number of different transformation models (degrees of freedom) and it
implements a general cost function weighting scheme for all cost functions.

8.2 AIR: Automated Image Registration

AIR was developed by Woods (Woods et al., 1998) at the David Geffen School
of Medicine at UCLA, CA. The C source code may be downloaded at http:
//air.bmap.ucla.edu.

AIR aligns a pair of images by minimizing the mean squared difference between
the image designated for resampling and the image to which it is being
registered. First and second derivatives of the cost function are computed and
used to iteratively adjust the model parameters. In addition to an optional
intensity scaling parameter, the algorithm adjusts the elements of polynomials
of the desired order. Registration begins with a first order polynomial (i.e.,
an affine transformation) and the order is incremented sequentially until the
order specified by the user is reached. Polynomial orders up to twelfth order are
implemented. At each order, registration begins with sparse sampling of the
data and proceeds to denser sampling, per user specifications, with subsequent
iterations. Criteria for advancing to denser sampling or to higher order
polynomials include the magnitude of the predicted improvement in the cost
function, the number of iterations without improvement in the cost function,
and the total number of iterations. In some instances, full Newton-based
minimization cannot proceed because the Hessian matrix of second derivatives
is not positive definite. The likelihood of a non-positive definite Hessian
matrix can optionally be reduced by omitting certain contributions to the
second derivatives using a strategy similar to that employed by the Levenberg-
Marquardt algorithm. The optimized polynomial transformation is stored, and
separate programs allow either of the two original images to be resampled into
the space defined by the other image using a variety of interpolation algorithms
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(nearest neighbor interpolation, trilinear interpolation, sinc interpolation, and
hybrids of these methods). Diagnostics are available to verify that no regions
with non-positive Jacobians are present. Polynomial transformations can be
mathematically combined with any number of affine linear transformations,
allowing data to be resampled directly from or to any space that has an affine
relationship to the original images.

(degrees of freedom (dof) = 168)

8.8 ANIMAL: Automatic Nonlinear Image Matching and Anatomical
Labeling

ANIMAL was developed by Collins et al. (Collins et al., 1994, 1995; Collins
and Evans, 1997; Robbins et al., 2004) of the Montreal Neurological Institute,
Canada. The original ANIMAL is available for download at http://www.bic.
mni.mcgill.ca/users/louis/MNI_ANIMAL_home/readme/. Lepage provided
a Perl script (see below) for implementing the multi-resolution strategy.

ANIMAL is based on multi-scale, 3-D cross-correlation. Spatial registration
is completed automatically as a two step process. The first accounts for
the linear part of the transformation by using correlation between Gaussian-
blurred features extracted from both volumes. In the second step, ANIMAL
estimates the 3-D deformation field required to account for this variability. The
deformation field is built by sequentially stepping through the target volume
in a 3-D grid pattern. At each grid-node i, the deformation vector required to
achieve local registration between the two volumes is found by optimization
of three translational parameters (txi,tyi,tzi) that maximize the objective
function evaluated only in the neighborhood region surrounding the node.
The algorithm is applied iteratively in a multi-scale hierarchy, so that image
blurring and grid size are reduced after each iteration, thus refining the fit.
The multi-scale approach also makes the procedure very robust and ensures
that the algorithm converges to the global minimum.

A Perl script (nlfit) implements the multi-resolution fitting strategy to map
brains into stereotaxic space at the Montreal Neurological Institute. At the
heart of this procedure is minctracc, the program that automatically finds
the best non-linear transformation to map one volumetric data set (stored
in MINC format) to another. The program uses optimization over a user
selectable number of parameters to identify the best transformation mapping
voxel values of the first data set into the second.

(dof < 3 x ~23,000 nodes (1.5M brain voxels / 4mm each direction) = 69,000)
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8.4 ART: Automated Registration Tool

ART was developed by Ardekani et al. (Ardekani et al., 2005) at the Nathan
Kline Institute, NY. The executables may can be downloaded at http://
www.nitrc.org/projects/art/. Ardekani revised the registration program
to allow one to specify an output file and revised the resampling code to
enable nearest-neighbor interpolation.

ART uses local normalized cross-correlation between the source and target
images as its similarity measure. It determines a displacement vector field
defined for each grid point on the target image using a non-parametric free-
form multi-resolution approach. The displacement vector field obtained at each
resolution level is regularized by median and low-pass filtering.

Prior to non-linear registration, there are options for the program to determine
a linear rigid-body (6-parameter) registration between the target and subject
images followed by a linear affine (12-parameter) registration (Ardekani et al.,
1995).

(dof ~ 3 x#brain voxels ~ 7million)

8.5 Demons: Diffeomorphic Demons

Diffeomorphic Demons was developed by Vercauteren et al. (Vercauteren et al.,
2007) at Mauna Kea Technologies and at INRIA Sophia Antipolis, France; it is
implemented as part of the finite difference solver framework within the Insight
Toolkit (ITK) and can be downloaded at http://hdl.handle.net/1926/510.
A graphical user interface is provided as part of MedINRIA (Toussaint et al.,
2007). Vercauteren provided a version of the resampling code with an option
for nearest-neighbor interpolation that doesn’t require origin information.

This non-parametric algorithm generalizes Thirion’s Demons algorithm
(Thirion, 1998) to produce a diffeomorphic spatial transformation (Ver-
cauteren et al., 2007). This method alternates between the computation of
warping forces inspired from optical flow theory and the regularization of
these forces by a simple Gaussian smoothing.

The Demons algorithm may be characterized as the optimization of a global
energy function (Cachier et al., 2003) where correspondences act as a hidden
variable in the registration process. The regularization criterion is then
considered as a prior on the smoothness of the spatial transformation s, and
point correspondences between image pixels (a vector field ¢) are allowed to
have some error.
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Given a fized image F(.) and a moving image M (.), the following global energy
is optimized:

1 1 1
B(c,5) = — Sim (F, M o ¢) + — dist (s,¢)” + gReg (s), (1)

where o; accounts for the noise on the image intensity, o, accounts for
spatial uncertainty on the correspondences and op controls the amount of
regularization. Classically, Sim (F,Mos) = L|F— Mos|? dist(s,c) =
¢ — 5| and Reg(s) = ||Vs||> but the regularization can also be modified
to handle fluid-like constraints.

Within this framework, the Demons registration can be explained as an
alternate optimization over s and c. The optimization is performed within
the complete space of dense non-rigid transformations by taking a series of
additive steps, s < s + u. In constrast, the diffeomorphic demons algorithm
optimizes E(c, s) over a space of diffeomorphisms. This is done in (Vercauteren
et al., 2007) by using an intrinsic update step, s < s o exp(u), on the group
of diffeomorphisms.

(dof ~ 3 x#voxels = 21million)

8.6 FNIRT: FMRIB’s Nonlinear Image Registration Tool

FNIRT was developed by Andersson et al. (Andersson et al., 2008) of the
FMRIB Centre at the University of Oxford, UK. Andersson provided pre-
release software for use in this study.

FNIRT is the FMRIB tool for small-displacement non-linear registration. The
displacement fields are modelled as linear combinations of a basis set of splines
of order two or higher, with a default of three (cubic splines). Regularisation
of the field is based on bending energy (default) or membrane energy (the
prior default used in this study), with optimization by multi-scale Levenberg-
Marquardt minimization. The registration is initialized and run to convergence
with sub-sampled images, a field of low resolution and a high regularization
weight. The images and the fields from the first step are then up-sampled, the
regularization modified and it is again run to convergence. This is repeated
until the required warp resolution and level of regularization is achieved. After
each resolution step the field is projected back onto the space of fields with
Jacobians within a predefined range (Karacali and Davatzikos, 2004).

The important and unique aspects of FNIRT are with respect to its
cost function. Normally when using a sum-of-squares (SOS) cost function
one minimizes the difference between a warped source image and some
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target. FNIRT minimizes the SOS between a warped source image and the
expectation of an image in target space. This expectation is based on an actual
image in target space and an intensity model. The intensity model will have
some set of parameters that is determined along with the warp parameters
as part of the optimization. This model can be very simple, for example just
a linear scaling of the target image, in which case the parameters will be
a single scale factor. The model can also be quite complex, if for example
one wants to model a spatially varying flip-angle (which is a real problem
with high-field scanners) it will consist of some set (e.g. 5) fields. Each of
these fields is modeled as a linear combination of some basis set (also splines)
and will consist of a few thousand parameters. For each voxel the expected
intensity would then be a 5th-order polynomial of the intensity in the target
image, where the coefficients are given by the values of the five fields at that
voxel. This way it is possible to accurately model an image where (due to
inhomogeneities) one area is strongly T1l-weighted and another area has a
strong T2-component. There is a set of different intensity models in FNIRT
and the decision of which to use is made based on the properties of the two
images one attempts to match.

(dof ~ 30,000)
8.7 IRTK: Image Registration Toolkit

IRTK was developed by Rueckert et al. (Rueckert et al., 1999; Studholme
et al., 1999; Rueckert et al., 2006) of Imperial College, UK. The executables
are available for download at http://www.doc.ic.ac.uk/~“dr/software/.

IRTK wuses a combined transformation T which consists of a global
transformation and a local transformation:

T(X> = Tglobal(x> + Tlocal (X) (2>

The global transformation describes the overall differences between the
two subjects and is represented by an affine transformation. The local
transformation describes any local deformation required to match the
anatomies of the subjects. IRTK uses a free-form deformation (FFD) model
based on B-splines. The basic idea of FFDs is to deform an object by
manipulating an underlying mesh of control points. The resulting deformation
controls the shape of the 3-D object and can be written as the 3-D tensor
product of the familiar 1-D cubic B-splines,

Tiocal(x) = Z Z Z Bl(U)Bm(U)Bn(w)ci—i-l,j-&-m,k—i-n (3)
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where ¢ denotes a m, x m, x m, lattice of control points which parameterise
the free-form deformation, 7, j, k denote the indices of the control points and
u, v, w correspond to the relative positions of x in lattice coordinates. The
lattice of control points is defined as a grid with uniform spacing which
is placed on the underlying reference image. The optimal transformation is
found using a gradient descent minimisation of a cost function associated
with the global transformation parameters as well as the local transformation
parameters. The cost function comprises two competing goals: The first term
represents the cost associated with the voxel-based similarity measure, in this
case normalised mutual information (Studholme et al., 1999), while the second
term corresponds to a regularization term which constrains the transformation
to be smooth.

In the current study no regularization was used. This will most likely not affect
results evaluated with overlap measures, but may affect studies interested
in folding in the deformation fields. A penalty term for folding in the
transformation is described in (Rueckert et al., 2006).

(dof ~ 3 x#control points = 1,422 843)

8.8 JRD-fluid: Jensen-Rényi Divergence fluid

JRD-fluid was developed by Chiang et al. (Chiang et al., 2007) at LONI,
UCLA, CA. Chiang provided the command options for the executables
and revised the resampling code to include an option for nearest-neighbor
interpolation. All registrations were run on LONT’s servers.

JRD-fluid is based on an information-theoretic measure, the Jensen-Rényi
divergence. JRD is derived from the joint histogram of two images. Using
variational calculus methods, the driving forces are defined throughout the
deforming image to maximize the JRD between it and the target image. A
viscous fluid regularizer was applied to guarantee diffeomorphic (i.e., smooth,
one-to-one) deformation mappings. The resulting partial differential equation
was solved iteratively by convolving the applied force field with the Green’s
function of the linear differential operator.

(dof ~ 1283 = 2,097,152)

8.9 ROMEQO: Robust multigrid elastic registration based on optical flow

ROMEO was developed by Hellier et al. (Hellier et al., 2001b) at INRIA

Rennes, France. Hellier provided the executables for this study.
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The ROMEO registration method expresses the registration process as the
minimization of a cost function depending on two terms: an optical flow-based
similarity measure and a regularization term. The optical flow hypothesis,
introduced by Horn and Schunck (Horn and Schunck, 1981), assumes that the
luminance of a physical point does not change when the point moves with the
flow:

F(s+Wart1) = f(s,13) = 0 (4)
where s is a voxel of the volume, t; and ¢y are the indexes of the volumes
(temporal indexes for a dynamic acquisition, indexes in a database for multi-
subject registration), f is the luminance function and w the expected 3-D
displacement field.

Generally, a linear expansion of this equation is preferred: V f(s,t) - wy +
fi(s,t) = 0, where V f(s,t) stands for the spatial gradient of luminance and
fi(s,t) is the voxelwise difference between the two volumes. The resulting set
of undetermined equations has to be complemented with some prior on the
deformation field. This prior is defined according to the quadratic difference
of the deformation field computed between neighbours. Using an energy-based
framework the regularization problem may be formulated as the minimization
of the following cost function:

Ulw; f) =2 [Vf(s,t) - wo+ fi(s, ) +a D [lws—wi|[? (5)

sES <s,r>€C

where S is the voxel lattice, C is the set of neighboring pairs w.r.t. a given
neighborhood system V on S (< s,r >€ C < s € V(r)), and « controls the
balance between the two energy terms. The first term is the linear expansion
of the luminance conservation equation and represents the interaction between
the field and the data. The second term is the smoothness constraint. In order
to cope with large displacements, an incremental multi-resolution procedure
is used to construct a pyramid of volumes by successive Gaussian blurring and
subsampling.

(dof ~ 2 million for 300,000 rigid and 50,000 affine estimates)

8.10 SICLE: Small-deformation, Inverse-Consistent, Linear-FElastic image
registration

SICLE was developed by Christensen et al. (Christensen, 1999; Christensen
and Johnson, 2001; Johnson and Christensen, 2002) at the University of Iowa.
Song provided the executables and helped to install the software.

SICLE is based on the principle of jointly estimating the forward h and
reverse ¢ transformations between two images while minimizing the inverse
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consistency error ||h(z) — g~ (x)|] + ||g(x) — 7' (x)||. Ideally, the forward
transformation h from image 7' to S and the reverse transformation g from
S to T should be uniquely determined and should be inverses of one another.
However, estimating h and g independently as with most uni-directional
image registration algorithms rarely results in an inverse consistent set of
transformations due to a large number of local minima. Jointly estimating
the forward and reverse transformations provides additional correspondence
information helping to minimize correspondence errors.

The SICLE image registration algorithm iteratively minimizes the following
cost function

C =0 [ [Ti(hsy(@)) = Ty(@) + [ Ty(hsu(@) - Tifa) da
10 [ [1€usi @) + || £uyo(a)|*da

X /Q i g () = g (@)1* + |fuga(e) — ()| da (6)

where the parameters o, p, and y are weighting constants used to vary the
influence of each term of the cost function and €2 is the image domain.
The intensity of the images are normalized between 0 and 1. The first
integral of the cost function defines the correspondence (squared intensity
difference) between the deformed template and target images and between
the deformed target and template images, respectively. The second integral
is used to regularize the forward and reverse displacement fields u; ; and u;;
respectively, and is minimized when the forward and reverse displacement
fields satisfy the properties of the linear elastic model. In the linear elastic
model, the linear differential operator Lu(z) = aV?u(z)+ 8V (V u(x))+~yu(zx)
penalizes large second and cross derivatives in the x, y, and 2z directions in the
displacement fields. The constant weighting parameters «, (3, and v are used
to vary the influence of the terms of Lu(z). The third integral is called the
inverse consistency constraint and is minimized when the forward and reverse
transformations h; ; and h;;, respectively, are inverses of each other.

The cost function in Equation 6 is minimized using the gradient descent
method described in (Christensen and Johnson, 2001) where each component
of the displacement field is parameterized in terms of a 3-D Fourier series. A
multi-resolution approach in the frequency and spatial domains is taken to
estimate the Fourier Series coefficients by first estimating the low frequency
components then increasing the number of harmonics as the estimation
progresses.

(dof = 7,986 for 10 harmonics)
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8.11 SPMb: Statistical Parametric Mapping

SPMb5 registration algorithms were developed by Ashburner et al.(Ashburner
and Friston, 1999, 2005; Ashburner, 2007) at the Functional Imaging
Laboratory, UK. Normalize, Unified Segmentation, and the DARTEL Toolbox
are part of the SPM5 package and may be downloaded from http://
www.fil.ion.ucl.ac.uk/spm/software/spm5/. Ashburner provided Matlab
scripts for composing the Normalization, Unified Segmentation and DARTEL
Toolbox transforms.

Five methods were evaluated from the SPM5 package: regular and “SPM2-
type” Normalization, Unified Segmentation, and regular and pairwise
implementations of the DARTEL Toolbox. It is expected that the SPM user
will register original brain images (non-skull-stripped and in their native space)
to idealized templates. The template images supplied with SPM5 conform to
the space defined by the ICBM, NIH P-20 project, and approximate that
of the space described in the atlas of Talairach and Tournoux (Talairach
and Tournoux, 1988). In this study, the “SPM2-type” Normalization and the
pairwise DARTEL were the only SPM methods that were applied in the same
manner as all of the other non-SPM algorithms, that is, by directly registering
one skull-stripped brain image in MNI space to another (rather than to one
another via a coregistration template).

SPMS5 regular and “SPM2-type” Normalization (Ashburner and Friston, 1999)

The algorithms work by minimizing the sum of squares difference between
the image which is to be normalized and a linear combination of one or more
template images (in the case of “SPM2-type” Normalization, a single target
image). The first step of the normalization is to determine the optimum 12-
parameter affine transformation. A Bayesian framework is used, such that
the registration searches for the solution that maximizes the a posteriori
probability of it being correct. That is, it maximizes the product of the
likelihood function (derived from the residual squared difference) and the
prior function (which is based on the probability of obtaining a particular
set of zooms and shears).

The affine registration is followed by estimating nonlinear deformations,
whereby the deformations are defined by a linear combination of 3-D discrete
cosine transform (DCT) basis functions. The parameters represent coefficients
of the deformations in three orthogonal directions. The matching involves
simultaneously minimizing the bending energies of the deformation fields and
the residual squared difference.

(dof =~ 1,000)
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SPM5 Unified Segmentation (Ashburner and Friston, 2005)

This approach uses a probabilistic generative model that combines image
registration, tissue classification, and bias correction. The log-likelihood
objective function is based on a mixture of Gaussians, and is extended to
incorporate a smooth intensity variation and nonlinear registration with tissue
probability maps. A small-deformation registration model is used, which is
parameterised by a linear combination of around 1,000 cosine transform basis
functions.

In addition to simple inter-subject registration, the Unified Segmentation
approach also performs classification of brain tissues into gray and white
matter, as well as bias correction and rudimentary skull-stripping.

(dof ~ 1,000)

SPM5 DARTEL Toolbox: Diffeomorphic Anatomical Registration using
Exponentiated Lie algebra (Ashburner, 2007)

This approach is an extension of the approach described by Ashburner
(Ashburner, 2007), and is intended to register tissue class images from multiple
subjects with a common template. The tissue class images are typically
gray and white matter, which have been extracted using the SPM5 Unified
Segmentation approach. The generative model assumes that the template
encodes the mean of a multinomial distribution. Pre-computed templates can
be used, but the toolbox also allows them to be iteratively generated from a
population of subjects using a “congealing” approach. Nonlinear registration is
considered as a local optimization problem, which is done using a Levenberg-
Marquardt strategy. The necessary matrix solutions are obtained in reasonable
time using a multi-grid method. A constant Eulerian velocity framework is
used, which allows a rapid scaling and squaring method to be used in the
computations.

(dof = 121x145x121x3 = 6,368,835)

8.12 SyN: Symmetric Normalization

SyN was developed by Brian Avants et al. (Avants et al., 2008) at the
University of Pennsylvania. Brian Avants provided the executables for a beta
version for this study. Several implementation improvements have been made
since the algorithm was evaluated in this work. SyN is available in the ANTS
toolkit; a new release with tutorial is available at http://www.picsl.upenn.
edu/ANTS/.
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The symmetric normalization (SyN) methodology uses a symmetric
parameterization of the shortest path of diffeomorphisms connecting two
neuroanatomical configurations. The SyN formulation uses a bidirectional
gradient descent optimization which gives results that are unbiased with
respect to the input images. SyN also provides forward and inverse continuum
mappings that are consistent within the discrete domain and enables
both large and subtle deformations to be captured. Specific performance
characteristics depend upon the range of similarity metrics chosen for the
study and the velocity field regularization. The current study uses Gaussian
smoothing of the velocity field and a gradient-based optimization of an
approximate cross-correlation (CC) similarity metric with CC evaluated in
a window of size 5HxbHxH voxels. A variety of other similarity measures are
available, including robust optical flow, mutual information and additional
correlation measures.

(dof ~ 4 x#voxels = 28million)
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